Biomech Model Mechanobiol (2014) 13:653-663
DOI 10.1007/s10237-013-0525-9

ORIGINAL PAPER

A three-dimensional constitutive model for the stress relaxation

of articular ligaments

Frances M. Davis - Raffaella De Vita

Received: 6 June 2013 / Accepted: 17 August 2013 / Published online: 29 August 2013

© Springer-Verlag Berlin Heidelberg 2013

Abstract A new nonlinear constitutive model for the three-
dimensional stress relaxation of articular ligaments is pro-
posed. The model accounts for finite strains, anisotropy,
and strain-dependent stress relaxation behavior exhibited by
these ligaments. The model parameters are identified using
published uniaxial stress—stretch and stress relaxation data
on human medial collateral ligaments (MCLs) subjected to
tensile tests in the fiber and transverse to the fiber directions
(Quapp and Weiss in J Biomech Eng Trans ASME 120:757—
763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67-76,
2005). The constitutive equation is then used to predict the
nonlinear elastic and stress relaxation response of ligaments
subjected to shear deformations in the fiber direction and
transverse to the fiber direction, and an equibiaxial extension.
A direct comparison with stress relaxation data collected by
subjecting human MCLs to shear deformation in the fiber
direction is presented in order to demonstrate the predictive
capabilities of the model.

Keywords Nonlinear viscoelasticity - Stress relaxation -
Transversely isotropic material - Finite strain -

Simple shear - Biaxial stretch - Collagenous tissue -
Medial collateral ligament (MCL)

1 Introduction

Articular ligaments are soft connective tissues that connect
bones to bones and stabilize the motion of joints. They are
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primarily composed of collagen fibers embedded in a ground
substance of water, proteoglycans, and glycoproteins. Col-
lagen fibers constitute their main load-bearing component.
They are loosely organized in bundles aligned along the lon-
gitudinal axis of these ligaments (Amiel et al. 1983).

Articular ligaments are viscoelastic materials exhibiting
stress relaxation, creep, and hysteresis phenomena. Stress
relaxation, which is the time-dependent decrease in stress
under a constant stretch, is essential to the ligaments’ proper
function. Indeed, this viscoelastic phenomenon acts to atten-
uate the stress within the stretched ligament, possibly pro-
tecting both the ligament and the surrounding structures from
damage. Stress relaxation along the longitudinal axis of the
ligaments has been thoroughly characterized (Provenzano
et al. 2002; Hingorani et al. 2004). However, although the
ligaments are primarily strained and stressed along this axis,
the strain and stress distributions are three-dimensional and
nonuniform due to their complex geometry and structure
(Gardiner and Weiss 2003).

The importance of modeling the three-dimensional con-
stitutive behavior of ligaments has been long recognized by
the biomechanics community (Fung 1993). In recent years,
several investigators have put forward constitutive models
to describe the three-dimensional elastic response of liga-
ments (Lanir 1983; Hurschler et al. 1997; Gardiner and Weiss
2001; Weiss et al. 2002), but only a few have attempted to
capture their three-dimensional viscoelastic behavior (Puso
and Weiss 1998; Johnson et al. 1996; Limbert and Middleton
2004). These constitutive laws for stress relaxation have been
formulated by assuming that the time-dependent and strain-
dependent properties can be separated so that the normal-
ized stress relaxation response is independent of strain. This
assumption has been, however, questioned by experimental
findings indicating that the normalized stress relaxation in the
articular ligament’s longitudinal direction is strain dependent
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(Thornton et al. 1997; Provenzano et al. 2001; Hingorani et al.
2004; Bonifasi-Lista et al. 2005).

Three-dimensional constitutive theories such as nonlin-
ear superposition (Findley and Lai 1967), Schapery’s theory
(1969), and the Pipkin—Rogers integral series (1968) have
been used to capture the strain-dependent normalized stress
relaxation behavior of ligaments and tendons (Provenzano
et al. 2002; Hingorani et al. 2004; Duenwald et al. 2009,
2010; Davis and De Vita 2012). However, these theories
have been applied to simulate the constitutive behavior of
these collagenous tissues solely along their fiber direction,
which is the primary physiological loading direction. The
first experimental studies that characterize the elastic and
viscoelastic properties of articular ligaments along not only
the collagen fibers’ direction but also the direction transverse
to these fibers (Fig. 1) have been carried out by Weiss and his
research group (Quapp and Weiss 1998; Bonifasi-Lista et al.
2005). The experimental results obtained by testing these lig-
aments uniaxially in the transverse direction have provided
crucial information about the mechanical role played by the
ground substance that can be used, as a first step, to develop
three-dimensional constitutive models.

In this manuscript, a three-dimensional constitutive law
is presented to describe the stress relaxation behavior of
articular ligaments. The constitutive model is formulated
within the integral series representation proposed by Pipkin
and Rogers (1968), which has been recently employed by
Rajagopal and Wineman (2009) to characterize anisotropic
nonlinear viscoelastic solids. The proposed model can cap-
ture the dependence of stress relaxation on strain that has been
observed experimentally in collagenous tissues (Provenzano
et al. 2001; Hingorani et al. 2004; Duenwald et al. 2010;
Bonifasi-Lista et al. 2005) but has never been captured by
three-dimensional models. Specifically, in Sect. 2, the the-
oretical framework set forth by Pipkin and Rogers is intro-
duced and a constitutive relation is proposed to describe the
three-dimensional stress relaxation response of articular lig-
aments. Published uniaxial experimental data on the elas-
tic (Quapp and Weiss 1998) and stress relaxation behavior
(Bonifasi-Lista et al. 2005) of human medial collateral lig-
aments (MCLs) tested along the longitudinal and transverse
directions are used to determine the model parameters as
described in Sect. 3. After the model parameters are identi-
fied, predictions of the stress relaxation response for simple
shear in the fiber direction, simple shear transverse to the fiber
direction, and equibiaxial extension are examined in Sect. 4.

2 Theoretical framework
As previously mentioned, articular ligaments are composed

of an amorphous proteoglycan-rich matrix, the ground sub-
stance, which is reinforced by collagen fibers. Ligaments are
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assumed to be transversely isotropic since the ground sub-
stance is modeled as isotropic and the collagen fibers are pref-
erentially aligned along the longitudinal axis of the ligament.
Water is the primary component of the ground substance and
accounts for more than 60 % of ligament’s weight (Kannus
2000). Thus, due to the high water content, ligaments are
assumed to be incompressible.

2.1 Constitutive model

The integral series representation proposed by Pipkin and
Rogers (1968) was selected to describe the three-dimensional
stress relaxation behavior of ligaments. Only the first term
of the integral series is used so that the first Piola—Kirchhoff
stress tensor, P(7), at any time ¢ has the form (Rajagopal and
Wineman 2009):

P(t) = —p)F (1)

t

+F(@) R[C(t),0]+/

—00

OR[C(1),t — 1]
0t — 1)

ey

where F(7) is the deformation gradient tensor, C(¢) =
F()F(¢) is the right Cauchy—Green deformation tensor,
R[C(7), t — 7] is the tensorial relaxation function, and p(z) is
the Lagrange multiplier that accounts for incompressibility.
Furthermore, the term F(#)R[C(?), 0] represents the instan-
taneous elastic contribution to the total stress at any time ¢.
The first Piola—Kirchhoff stress tensor, P(7), which relates
the force acting in the current configuration to the surface
element in the reference configuration, is preferred in this
formulation since this is the stress commonly reported in
experimental studies on articular ligaments.

In Eq. (1), the use of the right Cauchy—Green deformation
tensor, C(¢), as a strain measure in the tensorial relaxation
function, R[C(t),t — 7], guarantees that the principle of
material frame indifference is satisfied (Truesdell et al. 2004).
Assuming that the stress-free configuration is occupied at
t = 0, in the absence of deformation, the tensorial relaxation
function is identically zero. The tensorial relaxation function
also needs to be a monotonically decreasing function of time
to meet fading memory requirements (Truesdell et al. 2004).
We explicitly note that Eq. (1) yields the general nonlinear
elastic constitutive equation when time dependence is sup-
pressed with R[C(7)] = 2% where W is the so-called strain
energy density function.

Since articular ligaments are assumed to be transversely
isotropic, the tensorial relaxation function R[C(7), t —t] can
be written as (Truesdell et al. 2004)

R[C(7),t — 1] = k11 + k2C(r) + ksM @M
+ks M ® (C(1)M) + (C(1)M) ® M]
2
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where M is the unit vector that defines the axis of transverse
isotropy in the reference configuration and k1, k7, k3, and k4
are constitutive functions that depend on the strain invariants
of C, I1(7), I(7), 14(7), Is(t),and t —t. The strain invariants
of C are defined as:

1
Ii(t) =t (C(r)), D)= 5(h(r)z —w(C()?),

L(t)=M-C@)M, Is(t)=M-C(1)’M. 3)

The strain invariant /3(t) = det(C(r)) = 1 since the liga-
ments are assumed to be incompressible. Note that /1 (t) and
I (7) are the strain invariants of C that are used to describe the
isotropic response of the ground substance. The additional
strain invariants, /4(t) and I5(t), account for the anisotropy
generated by the presence of the collagen fiber reinforce-
ment. By denoting the components of C as C;; in a Carte-
sian coordinate system with unit vector basis {E{, Eo, E3}
and assuming that M = E3, one has that I4(t) = C33 and
Is5(t) = C%S + C%3 + C§3. It can then be observed that 14(7)
is the square of the stretch in the fiber direction and, thus,
has a clear physical interpretation. The physical interpreta-
tion of I5(t) cannot be given as easily; this strain invariant
captures the effect of stretching and shearing in the fiber
direction.

Alternatively, the tensorial relaxation function can be
assumed to be given by (Rajagopal and Wineman 2009)

AW (1), (1), 14(7), Is(x), t — T)
0C

R[C(7), 1 — 7] =2
“4)

where W is the scalar potential density function. The con-
stitutive functions ki, k», k3, and k4 can be then determined
from the scalar potential density function using the following
relationships:

aw oW aw
=2 —+L(t)— ), kn=-2—/,
! (811 + 1(”312) 2 ol
aw oW
ky=2— , kg=2—o 5
3 ol 4 o5 (5

where, for the ease of notation, the dependence on the strain
invariants of C and ¢ — t has been dropped.

2.2 A tensorial relaxation function for articular ligaments

We adopt the following form of the tensorial relaxation func-
tion R[C(7), t — 7]

RIC(7), 1 — 7] = R [C(2), 1 — 7] + Ref[C(x), £ — T].
(6)

where Ry [C(7),t — 7] is a tensorial relaxation function
representing the contribution of the ground substance and

R [C(7), t — T]is a tensorial relaxation function represent-
ing the contribution of the collagen fibers. By assuming that
ki and ky are functions of /;(t) and t — 7, k3 is a function
of I4(t) and t — 7, and k4 is identically zero, one obtains the
following relations for the tensorial relaxation functions Ry
and R.¢

Res[C(r), 1 — 1] =k (I1(7), 1 — 1)1
+ky (I(1), 1 — 1) C(7) )

and
Ri[C(z),t — 1] =k3 (I4(7),t —T)M @M (8)

The above tensorial relaxation functions are fully specified
once the constitutive functions k1, k2, and k3 are assigned.
The selection of these functions is based on the previous
descriptions of the elastic and viscoelastic behavior ligaments
(Fung 1993; Quapp and Weiss 1998; Weiss et al. 2002; Lim-
bert and Middleton 2004), the details of which will be pre-
sented later (see Sect. 5). Specifically, the constitutive func-
tions are chosen to be:

ki = (6‘16‘2€C2(1](1)_3) - %Il (7-')) ri(t —7) )
Cc|cC
ko = %rl(z‘—t) (10)
P R (e+B@=D — 1) ry(I4(r), t — 1) (1) > 1
7o Ii(r) < 1

Y

where c1, ¢2, ¢3, ¢4 are constants. The functions ri(t — 1)
and rp(I4(t), t — 1) are defined as:

nit—t)=(1—a)e =0 4 (12)
r(Ia(), t — 1) = (1 —a(la(r))) e TV PIEO) 4 g (1y(T))
(13)

where a and b are constants and «(/4(t)) and B(I4(t)) are
the functions of the strain invariant /4(t). As a result of the
decomposition of the tensorial relaxation function, Egs. (9)
and (10) capture the isotropic response of the ground sub-
stance while Eq. (11) accounts for the anisotropic contribu-
tion of the collagen fibers. We explicitly note that the func-
tion k4 from Eq. (2) is taken to be identically zero as we
have suppressed dependence on /s5(t). This assumption is
common in biomechanics and reduces the number of con-
stitutive functions which must be determined from experi-
mental data (Holzapfel and Ogden 2009). In fact, the uni-
axial data collected along the longitudinal and transverse
directions of the ligaments, which are used to determine the
model parameters as described in Sect. 3, are not sufficient
to differentiate between the contributions of /4(t) and I5(t)
(Merodio and Ogden 2005). For its simple physical interpre-
tation, /4(7) is preferred over I5(7).
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3 Identification of model parameters

Published experimental data on the elastic and stress relax-
ation response of human MCLs collected by subjecting speci-
mens to uniaxial tensile tests along the longitudinal and trans-
verse directions as schematically presented in Fig. 1 are used
to determine the model parameters (Quapp and Weiss 1998;
Bonifasi-Lista et al. 2005). Toward this end, the ligaments
are assumed to undergo isochoric axisymmetric deforma-
tions in the longitudinal and transverse directions, and the
corresponding stresses for the elastic and stress relaxation
behavior are derived and presented in Sects. 3.1 and 3.2
for the longitudinal and transverse directions, respectively.
These expressions are then fit to the experimental data as
described in Sect. 3.3.

3.1 Axisymmetric deformation in the fiber direction

Let {E1, E;, E3} and {ey, e, e3} be two sets of unit vectors
that define orthonormal bases in the reference and deformed
configurations, respectively. The collagen fibers are assumed
to be parallel to E3 in the reference configuration so that
M = Ej3 as illustrated in Fig. 1.

The ligament is assumed to undergo an isochoric axisym-
metric deformation described by

1 1
=i X 2= ypiE X =0 (09
E;
E,

Femoral Insertion

(a)

E,

— -

Tibial Insertion
(b)

Fig. 1 Schematic of the MCL showing a sample cut in the a longi-

tudinal (fiber) direction and b transverse direction. Note the axis of

transverse isotropy in the reference configuration, M, coincides with
E3
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where (X1, X», X3) and (x1, x2, x3) represent the Cartesian
coordinates of a generic point in the reference and deformed
configurations, respectively, and A(?) is the axial stretch that
is always greater than or equal to 1. It follows that the defor-
mation gradient tensor, F(¢), and the right Cauchy—Green
deformation tensor, C(t), are given by

F(r) =

QE+———eE +A(H)e3s ®E;3,

1
)L(I)I/Z €1 )\( )1/2

1

C_—EE—EEszE

(®) 0 1® +A() 2 QE, + A1) E; QE;3.
(15)

The first Piola—Kirchhoff stress tensor that defines the instan-
taneous elastic response can be computed by evaluating
Eq.(1)att = t with the tensorial relaxation function given by
Egs. (2) and (9)-(11) with F and C given by Eq. (15). More-
over, assume that the lateral surface of the ligament is traction
free so that P;; = Py, = 0. Enforcing the boundary condi-

. 224213
tions, one finds that p = <552 (2e62( e ) — 22— %

The only nonzero component of the first Piola—Kirchhoff
stress tensor, P33, can then be written in terms of the axial
stretch A:

P33(h) = c3h (664%1) _ 1)

L ae (ze”(*z”“) _ l) (ﬁ - 1) . (16)

2\ A A

To model the stress relaxation response, a constant axial
stretch A(7) = Lis prescribed in the fiber direction. The stress
relaxation response of the ligament can then be described
using Egs. (1), (2), (9)—(11), and (15). The lateral surface
of the ligament is assumed to be traction free, and hence,
P11(t) = Px(t) = 0. Enforcing the boundary conditions
to find p(¢), the only nonzero component of the first Piola—
Kirchhoff stress tensor, P33 ():, t), is found to be

(5 2
) T
2\ A A

+h (804(12_1) — 1) G2, 1) (17)

P33(h, 1) =

where the functions r1(¢) and ry(I4 = 22, t) are defined in

Egs. (12) and (13), respectively.

3.2 Axisymmetric deformation transverse to the fiber
direction

The ligament is assumed to undergo an isochoric axisym-
metric deformation described by

1

X1 :)\,(t)X], XQZWx

2, X3 = X3 (18)

1
)\(,)1/2
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where the collagen fibers are parallel to M = Ej3 in the ref-
erence configuration and A(t) is the axial stretch. Again, the
value of the stretch is taken to be greater than or equal to 1.
We note that the values of the stretches along the E, and
E; directions are assumed to be equal since, according to
selected constitutive function k3 presented in Eq. (11), the
collagen fibers do not contribute to the stress in compres-
sion. In this case, the response of the articular ligaments is
governed by the ground substance, and thus, it is effectively
isotropic. The deformation gradient tensor, F(7), and the right
Cauchy—Green deformation tensor, C(t), are then given by

F@) =rt)e1 ®E1+—=7

e QE)+———e3 QEs,

At )1/2 )\(01/2

The first Piola—Kirchhoff stress tensor that defines the instan-
taneous elastic response for a uniaxial load in the transverse
direction can be computed by evaluating Eq. (1) att = 7
with the tensorial relaxation function given by Egs. (2) and
(9)—(11) where F and C are given by Eq. (19). The traction-
free boundary condition on the lateral surface requires that
P> = P33 = 0. Enforcing the boundary conditions, one
finds a value for the Lagrange multiplier p. Then, the only
nonzero component of the first Piola—Kirchhoff stress tensor,
P11(A), is given by

2 o (r24+2- 1
cicr (Az 7) (Ze 2(12+2 3) B 7) . 20)
2)\ A A

For a uniaxial stress relaxation in the direction transverse
to the fibers, we assume that the ligament is subjected to a
constant axial stretch applied transverse to the fiber direc-
tion, i.e., A(t) = *. The stress relaxation response of the
ligament can then be described using Egs. (1), (2), (9)—(11),
and (19). The traction-free boundary condition on the lat-
eral surface requires that Py, (#) = P33(¢) = 0. By enforc-
ing the traction-free boundary conditions, one finds that

2401 3) -
p@t) = 42 ze”(x +24-3) A2 i) r1(t). Then, the

P =

only nonzero component of the first Piola—Kirchhoff stress
tensor, Py1 (X, 1), is found to be

Pu(i1) = L (12 - i) (ze°'2(12+§3) - i) o)
2 i 7

(21)
where the function 7 (¢) is presented in Eq. (12).
3.3 Parameter identification
Due to the lack of three-dimensional experimental data,

quasi-static stress—stretch data collected by performing uni-
axial tensile tests on human MCLs along their longitudinal

< 30F o Experimental Data
E — Model Fit =]
.25k RP=099 e

—_ — )
(=) w (=)

w

Nominal Axial Stress, Psy

(=1

1 1.02 1.04 1.06 1.08 1.1

Applied Axial Stretch, A4

Fig. 2 Average stress—stretch experimental data for nine human MCL
samples stretched along the fiber direction obtained by Quapp and Weiss
(1998) and model fit with ¢; = 0.86 MPa, ¢, = 8.16, ¢c3 = 21.77 MPa,
and ¢4 = 3.30

and transverse directions were used to determine the elas-
tic material parameters (Quapp and Weiss 1998). The data
were digitized from Fig. 4 of the cited manuscript by Quapp
and Weiss using PlotDigitizer (v. 2.5.1). The values of the
elastic material parameters, cy, ¢2, ¢3, and ¢4, were then
determined by minimizing the sum of the squared differences
between the stresses computed using Egs. (16) and (20) and
those measured experimentally simultaneously. Toward this
end, the built-in minimization function in MATLAB (v. 7.12,
MathWorks), finincon, was employed while constraining the
model parameters c, ¢3, and ¢4 to be nonnegative and ¢, >
0.36. These restrictions were imposed to ensure that the mate-
rial response determined by the constitutive model was phys-
ically reasonable (Merodio and Ogden 2003; Bustamante
and Merodio 2010; Murphy 2012). The values for the elastic
material parameters were found to be ¢; = 0.86 MPa, ¢, =
8.16, c3 = 21.77 MPa, and ¢4 = 3.30 . The model was able
to fit well the stress—stretch data, which were collected by
testing the ligamentous specimens in their longitudinal and
transverse directions (R2 > 0.99) (Figs. 2, 3). The nonlinear
stiffening phenomenon in the stress—stretch curve of speci-
mens oriented along the longitudinal direction (Fig. 2) and
the approximately linear stress—stretch curve of specimens
oriented in the transverse direction (Fig. 3) was captured.
Experiments that characterize the three-dimensional stress
relaxation behavior of ligaments have yet to be performed.
The most comprehensive set of experimental data on the
stress relaxation response of human MCLs has been pub-
lished by Bonifasi-Lista et al. (2005). Stress relaxation data
were obtained by conducting uniaxial tests of ligamentous
specimens in the longitudinal and transverse directions at
three different strain levels. The data collected indicated that
the MCL displays strain-dependent stress relaxation behav-
ior in the longitudinal direction. However, given the lim-
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O Experimental Data ()
— Model Fit

)

R?=0.99

—_

08}
0.6
04|

02}

Nominal Axial Stress, P, MPa

(=]

‘1.02‘ ‘ ‘1.04‘ ‘ ‘1,06‘ ‘ ‘1.08‘
Applied Axial Stretch, A;

—_

Fig. 3 Average stress—stretch experimental data for seven human MCL
samples stretched along the transverse direction obtained by Quapp and
Weiss (1998) and model fit with ¢; = 0.86 MPa and ¢, = 8.16

ited number of strain levels used in the experiments, the
functions «(/4) and B(I4), which appear in Eq. (17) via
Eq. (13) that capture the strain-dependent stress relaxation
response, could not be computed. For this reason, these
functions were set to forms previously determined by the
authors for collagen fiber bundles (Davis and De Vita 2012):
a(ly) = 0.73 ¢~ 1469U=D) and B(14) = 0.2084 (14 — 1).

In order to determine the model parameters a and b, the
experimental data by Bonifasi-Lista et al. (2005) obtained by
subjecting specimens to uniaxial stress relaxation tests along
the transverse direction at a strain level of 8 % were used.
These data were digitized from Fig. 4 of the manuscript by
Bonifasi-Lista et al. (2005) using PlotDigitizer. The values
of the parameters a and b were found by minimizing the sum
of the squared differences between the theoretical stresses
in Eq. (21) and the experimentally determined stresses. The
parameters were constrained to satisfy the following condi-
tions: 0 < a < 1 and b > 0. Figure 4 shows the digitized
experimental data and the results of the curve fitting with
a = 0.75 and b = 0.016 1/s. Note that the predicted axial
stress, P11(¢), is normalized by its value at t = 0, P11(0),
and plotted versus time. Overall, the model was able to cap-
ture the stress relaxation response in the transverse direction,
but at intermediate times, when 1 < ¢t < 10 s, the model
overpredicted the normalized stress relaxation response.

4 Model predictions

The performance of the proposed model is further evalu-
ated by considering its predictions for simple shear in the
fiber direction, simple shear transverse to the fiber direc-
tion, and equibiaxial extension. In these predictions, the
material parameters and functions are fixed to those com-
puted by fitting the uniaxial experimental data as described

@ Springer
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Fig. 4 Normalized experimental data (mean+SD) for five human
MCLs subjected to uniaxial stress relaxation tests in the transverse direc-
tion by Bonifasi-Lista et al. (2005) and the model fit where a = 0.75
and b = 0.016 1/s

in the previous section. For convenience, these values are
c1 = 0.86 MPa, ¢c» = 8.16, c3 = 21.77 MPa, ¢4 = 3.30,
a = 0.75b = 0.016 1/s, a(ly) = 0.73¢~149U=D and
B(ly) = 0.2084 (14 — 1). Note that for each of the stress
relaxation predictions shown hereafter, the normalized stress,
denoted P; j» 1s plotted to more easily visualize the influence
of strain level on the stress relaxation response. The stresses
are always normalized by their initial value at t = 0.

4.1 Simple shear in the fiber direction

Consider the isochoric deformation in the E;—E3 plane for
simple shear in the fiber direction defined by

x1=X1, =X, x3=y0)X1+X3 (22)

where the collagen fibers are parallel to M = Es in the refer-
ence configuration and y (¢) is the amount of shear. The defor-
mation gradient tensor, F(¢), and the right Cauchy—Green
deformation tensor, C(¢), then are

Fi)=e QEI+e2QE+y(#)es ®E| 4+ e3 ® Es,
C) = (1+7(1)?) B @ Ei+7 (1) (E ® Es+E; © 1)
+E,QE+ E3QE;3. (23)

The collagen fibers are not stretched when the ligament is
sheared in the fiber direction. Indeed, from Eq. (23) it follows
that /4 = C33 = 1. Consequently, the constitutive function
k3 defined in Eq. (11), which accounts for the contribution
of the collagen fiber reinforcement, is identically zero. As a
result, simple shear in the fiber direction is governed by the
isotropic response of the ground substance.

The instantaneous elastic response of a ligament subjected
to simple shear in the fiber direction can be computed by
evaluating Eq. (1) at + = 7 where the tensorial relaxation
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Fig. 5 Predicted shear stress, P13 (left y-axis), and normal stresses, P
and P33 (right y-axis), as a function of the amount of shear, y, fora MCL
sheared in the fiber direction. The insert shows a schematic of the shear
deformation

function is defined by Eqgs. (2) and (9)—(11). After assuming
a plane stress boundary condition so that P>>(¢) = 0, p can
be computed and its value substituted into Eq. (1). Then, the
first Piola—Kirchhoff stress tensor takes the form

2

P(y)= c1c22y el ®E1+¥ (2eczy2—yz—1) e QK3
2

+ % (Zec2y2 — 1) e3sQE; + ey e; ® Es3.

24

In Fig. 5, the shear stress, Py3, computed from Eq. (24) is
plotted versus the amount of shear y on the left y-axis. The
resulting curve is nonlinear exhibiting the strain-stiffening
phenomenon that has been observed experimentally (Weiss et
al. 2002). The stiffening effect becomes more pronounced for
y > 0.20. We note that the first Piola—Kirchhoff stress tensor,
P, is not symmetric, P3; # Pj3, but a similar relationship
between P31 and y can be obtained. The two normal stresses,
P11 and P33, required to generate a homogeneous shear are
also plotted in Fig. 5 on the right y-axis. Notice that the
normal stresses are an order of magnitude smaller than the
shear stresses.

The first Piola—Kirchhoff stress tensor that describes the
stress relaxation behavior is calculated by replacing Egs. (2),
(9)—(11), and (23) in Eq. (1) with y(t) = y where 7 is a
constant. By enforcing the plane stress boundary condition,
which requires P> () = 0, the value for the Lagrange mul-
tiplier p(¢) that accounts for incompressibility is determined
and substituted into Eq. (1). The resulting stress tensor is:
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Fig. 6 Normalized stress relaxation data (mean+SD) for five human
MCL samples sheared in the fiber direction and allowed to relax
obtained by Bonifasi-Lista et al. (2005) for an applied shear of 0.35
and the model prediction of the normalized shear stress, P3 ()
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ri(t) e3 @ Es. (25)

where the function r;(¢) is presented in Eq. (12).

As noted earlier, the ligament’s response to simple shear
in the fiber direction is governed by the isotropic response of
the ground substance. Therefore, no strain-dependent stress
relaxation behavior is predicted by the proposed model for
this type of deformation, as the strain-dependent relaxation
behavior is attributed only to the collagen fibers. In Fig. 6,
the predicted shear stress, P13(t), is directly compared with
experimental data published by Bonifasi-Lista et al. (2005)
that were obtained by digitizing Fig. 4 in their manuscript for
y = 0.35. Good agreement (R? = 0.90) is found between
the experimental data and the model prediction. However,
similar to the stress relaxation response for a stretch applied
in the direction transverse to the fibers (Fig. 4), at midrange
times, t = 1 — 10 s, the model overpredicts the value of the
normalized stress.

4.2 Simple shear transverse to the fiber direction

Consider the isochoric deformation in the E{—E3 plane for
simple shear transverse to the fiber direction given by

n=X1+y® X3, x2=X3, x3=X3 (26)

where y (t) is the amount of shear. The deformation gradient

tensor, F(¢), and the right Cauchy—Green deformation tensor,

C(t), are

F(t) =e;QE; +y(t)e; QE3 4+ e2  E; + e3 ® Eg,

CtH)=EIQE +y(®) (E1®E; +E3;QE)) + E2 ® Ez
+ (1 + )/(t)z) E; ® E;. 27)
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Fig. 7 Predicted shear stress, P13, and normal stress, P33 (left y-axis),
and the normal stress, Py (right y-axis), as a function of the amount
of shear, y, for a MCL sheared in the direction transverse to the fibers.
The insert shows a schematic of the shear deformation

The collagen fibers are stretched as the ligament is sheared.
Indeed, I4s =C33 =1+ y(t)z. As a result, both the ground
substance and the collagen fibers contribute to the ligament’s
response to simple shear transverse to the fiber direction.
The instantaneous elastic response to a simple shear trans-
verse to the fiber direction is computed by evaluating Eq. (1)
at ¢+ = 7, with the tensorial relaxation function given by
Egs. (2) and (9)—(11) and substituting Eq. (27). The Lagrange
multiplier p can be computed from the plane stress bound-
ary condition Pyp = 0. Then, the first Piola—Kirchhoff stress
tensor for the instantaneous elastic response takes the form

Py = %yz el E| + % (Zeczyz — )/2 — 1) es QE;
+ [03)/ (er” = 1)+ % (27" — 1)] el ® E;
+ [c3 (ew2 - 1) ¥ %yz] e; ® Es. (28)

In Fig. 7, the first Piola—Kirchhoff shear stress component
Py3, which appears in Eq. (28), is presented versus the amount
of shear y. The normal stresses, Py; and P33, required to sus-
tain simple shear transverse to the fiber direction are also
plotted in Fig. 7. A comparison between Figs. 5 and 7 shows
that the shear stress, P13, and normal stress, P33, are larger for
the same amount of shear when the ligament undergoes sim-
ple shear transverse to the fiber direction. The increase in the
shear stress, P13, and normal stress, P33, is due to the contri-
bution of the collagen fibers. Notice that the normal stresses
required to sustain shear transverse to the fiber direction are
unequal with P33 > Pqj.

Stress relaxation for simple shear transverse to the fiber
direction is described by Egs. (1), (2), and (9)—(11) with the
boundary condition Pyp = 0 and assuming that y () = y is
constant. The first Piola—Kirchhoff stress tensor is then
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Fig. 8 Prediction of the normalized shear stress, Py3(¢), for a MCL
undergoing stress relaxation in shear transverse to the fiber direction at
three levels of applied shear y = 0.05, 0.25, and 0.50.
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where the functions r{(¢) and ry(Iy = 1 + )72, t) are defined
in Egs. (12) and (13).

For the deformation considered here, the collagen fibers
are stretched as the ligament is sheared. Thus, since the col-
lagen fibers are assumed to be responsible for the strain-
dependent stress relaxation behavior of ligaments, the nor-
malized stress relaxation computed via the shear stress P13(¢)
and the normal stress P33(¢) exhibits strain dependence. In
Fig. 8 the normalized shear stress, Pi3(1), during stress relax-
ation is plotted for three values of the amount of shear: y =
0.05, 0.25, 0.50. As the amount of shear increases, the value
of the stress at equilibrium and the time to reach the equilib-
rium stress decrease.

4.3 Equibiaxial extension

For an isochoric equibiaxial extension along E and E3, the
deformation is assumed to be

x1=A0X1, x X2, x3=A(1) X3, (30)

T 22a)

where A(#) is the amount of stretch. The deformation gradient
tensor, F(¢), and the right Cauchy—Green deformation tensor,
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Fig. 9 Predicted stress—stretch response for the normal stress P33 (left
y-axis) and the normal stress Py (right y-axis) for a MCL subjected to
an equibiaxial extension

C(1), respectively, are then given by

1
Fi)=Ar1t)e1 ®E; + Wez QEz + A1) e3 ® E3,

1
C(t) =r1)’E; QE; + Ou E; @ Ey + (1) E3 @ E3.
31

The surfaces of the ligament with outer normals +E, are
assumed to be traction free, and hence, P = 0. Sub-
stituting Eqgs. (2), (9)—=(11), and (31) into Eq. (1) at time
t = 7, the first Piola—Kirchhoff stress tensor for the instanta-
neous elastic response is computed. The Lagrange multiplier
found by enforcing the traction-free boundary condition is
p = cieon™? 2 (227 4274=3) Az). Then, the first Piola—
Kirchhoff stress tensor becomes

6
P() = cic2 (k - 1) (zecZ(2x2+r4—3) _ )Lz) e ®F,
225
6
n 12 ()‘ - 1) (zecz(zxzﬂ—ts) _ )\2)
225

Tesh (ﬂ“z—l) - 1)] e; ® Ej. (32)

In Fig. 9, the normal stresses in the fiber direction, P33, and
in the transverse direction, Py, are plotted. As expected, the
normal stresses corresponding to the same stretch are much
higher in the fiber direction.

The first Piola—Kirchhoff stress tensor that describes the
stress relaxation response is found by using Egs. (1), (2), (9)—
(11), and (31), assuming that the stretch A(¢) has a constant
value A. Again, the value for p is determined by enforcing

the traction-free boundary condition on the surfaces with the
outer normal =E,. The first Piola—Kirchhoff is then
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Fig. 10 Predicted normalized stress relaxation response along the E;
direction, Py (¢) (solid line), and the E; direction, P33(¢) (dashed lines),
for a MCL allowed to relax at a constant equibiaxial stretch, A In
the fiber direction, the stretch level influences the normalized stress
relaxation behavior so four representative stretch levels are plotted,
% =1.01,1.02, 1.05, and 1.075
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In Fig. 10, the normalized stress relaxation response in the
fiber direction, P33 (¢), at four levels of stretch,x =1.01,1.02,
1.05, and 1.075, is shown. The normalized stress at equilib-
rium and the time it takes for the normalized stress relaxation
response to reach equilibrium decrease with increasing val-
ues of the applied stretch. The normalized stress relaxation
response in the transverse direction, Py1(r), which is inde-
pendent of the stretch, is also plotted in Fig. 10.

5 Discussion

A three-dimensional nonlinear constitutive relation was pro-
posed to describe the stress relaxation response of articu-
lar ligaments. The nonlinear strain-stiffening effects, finite
strains, and strain-dependent stress relaxation behavior were
captured. The constitutive relation extends to three dimen-
sions recent work done by the authors on modeling the stress
relaxation response of collagen fiber bundles by accounting
for the contribution of the ground substance (Davis and De
Vita 2012). The model parameters were identified using pub-
lished uniaxial elastic (Figs. 2, 3) and stress relaxation data
(Fig. 4) obtained by testing human MCLs along the longi-
tudinal and transverse directions (Quapp and Weiss 1998;
Bonifasi-Lista et al. 2005).
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The model predictions for the elastic and viscoelastic
response to simple shear in the fiber direction (Figs. 5, 6),
simple shear transverse to the fiber direction (Figs. 7, 8), and
equibiaxial extension (Figs. 9, 10) were also presented. For
simple shear in the fiber direction, the model prediction was
directly compared with available empirical stress relaxation
data (Bonifasi-Lista et al. 2005) (Fig. 6). The good agreement
with experimental measurements suggests that the constitu-
tive law holds promise for describing the three-dimensional
viscoelastic behavior of ligaments. Further validation with
three-dimensional experimental data is necessary to fully
assess and, ultimately, refine the predictive capabilities of
the proposed model.

The choice of the tensorial relaxation function with the
constitutive functions &y, k2, k3, and k4, which describe the
three-dimensional viscoelastic response of the articular lig-
ament, was a critical component of this study. The tensorial
relaxation function was defined by considering separately
the contributions of the ground substance and collagen fibers
(Eq. (6)). The ground substance was assumed to govern the
nonlinear elastic strain-stiffening behavior observed in sim-
ple shear in the fiber direction. The collagen fibers were
assumed to be responsible for the nonlinear elastic stress—
stretch behavior and the strain-dependent normalized stress
relaxation response of the ligaments.

The elastic response of the ground substance is obtained
by setting + = t in Eq. (7) after specifying the constitutive
functions k; and k;. Simple forms of these functions were
considered. These include those leading to the neo-Hookean
and Mooney—Rivlin models that were unable to reproduce
the nonlinear strain-stiffening phenomenon observed exper-
imentally for shear deformations in the fiber direction (Weiss
et al. 2002). The constitutive functions k| and k, were then
computed via Eq. (5) by adopting the strain energy pro-
posed by Weiss et al. (2002), that is, W = clem(ll_3) —
teier (L = 3).

The elastic behavior of the collagen fibers defined by
Eq. (8) for t = t was modeled by assuming that the con-
stitutive function k3 is an exponential function of the strain
invariant I4(t) when the collagen fibers are stretched, i.e.,
I4(t) > 1. This form of the constitutive function can cap-
ture the strain-stiffening phenomenon exhibited by the MCL
when it is axially stretched in the longitudinal direction. The
function k3 is identically zero when the collagen fibers are
unstretched or compressed, i.e., I4(t) < 1. This means that
the collagen fibers buckle when compressed providing no
contribution to the total stress. In Eq. (2), the constitutive
function k4 that depends on the strain invariant /5(t) was set
to zero. This assumption reduces the number of material para-
meters that need to be determined from experimental data.
For an in-depth discussion about the differences between a
constitutive model for a transversely isotropic material that
depends on I5(7) as opposed to 14(7), the reader is referred to
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the manuscript by Merodio and Ogden (2005). These authors
pointed out, inter alia, that I4(t) and I5(t) are not indepen-
dent for many plane deformations where the fiber reinforce-
ment lies in the plane.

The normalized stress relaxation of MCLs in the trans-
verse direction has been shown to be independent of strain
(Bonifasi-Lista et al. 2005), for strain values between 8 and
12 %. For this reason, the function r| presented in Eq. (12),
which captures the normalized stress relaxation response of
the ground substance, was assumed to depend solely on time
and not on strain. On the other hand, the normalized stress
relaxation of collagen fibers is described by the function
ry given in Eq. (13) that depends on time and strain. Sev-
eral experimental studies on the uniaxial stress relaxation
response of ligaments and tendons in the fiber direction (Hin-
gorani et al. 2004; Provenzano et al. 2001; Bonifasi-Lista et
al. 2005; Duenwald et al. 2009, 2010) including our recent
study on collagen fiber bundles (Davis and De Vita 2012)
support this assumption. Specifically, the functions « and 8
in Eq. (13) are selected to describe strain-dependent changes
in the ratio of the initial stress to the equilibrium stress and
the relaxation rate, respectively. It must be noted that some
authors have indicated that, for very large strains, the nor-
malized stress relaxation behavior in the fiber direction is
independent of strain at least for some ligaments (Pioletti
and Rakotomanana 2000; Hingorani et al. 2004). If this is
indeed the case, the current model can be amended easily so
that the functions « and B that appear in Eq. (13) are func-
tions of time and strain that take constant values at these large
strains.

The present study has certain limitations that need to be
discussed. Due to the paucity of stress relaxation data at dif-
ferent strain levels for human MCLs, the functions « and
B could not be determined. Therefore, they were set to be
equal to those previously determined for collagen fiber bun-
dles extracted from rat tail tendons (Davis and De Vita 2012):
« was set to be a linear function and 8 an exponential function
of 1. Perhaps, the forms of these functions do not change
significantly for human MCLs, but the values of the constants
that define them are likely going to be different.

Published quasi-static stress—stretch data were used to
determine the instantaneous elastic behavior of human
MCLs (Quapp and Weiss 1998). In actuality, the mechanical
response of ligaments is dependent on the strain rate, and
thus, experimental data that capture the instantaneous elastic
response of the MCLs could be quite different than the quasi-
static ones used to determine the constants c1, ¢2, ¢3, and ¢4
(Figs. 2, 3). The strain rate dependency could be incorpo-
rated in the constitutive model by, for example, employing
the approach presented by Limbert and Middleton (2004).
Further experimental studies are, however, required to char-
acterize the strain-rate-dependent behavior of articular liga-
ments in the fiber and transverse to the fiber directions.
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Another limitation of this study, and many other studies
like this on model development and validation, is the assump-
tion that the deformations of the MCLs are homogeneous.
This assumption is especially violated during shear defor-
mations. The empirical data by Bonifasi-Lista et al. (2005)
used to validate the proposed model were collected using
an apparatus that could not provide normal tractions on all
of the inclined faces of the specimens. These normal trac-
tions are required to obtain a homogeneous shear defor-
mation (Truesdell et al. 2004; Horgan and Murphy 2011).
Only for small strains can a relatively homogeneous shear
deformation of a nonlinear elastic specimen be produced
without supplying the required normal stresses. For this
reason, the spatial variation in the strain field of articular
ligaments needs to be measured using optical techniques,
such as the digital image correlation methods (Zhang and
Arola 2004), and compared with a finite element implemen-
tation of the constitutive model for complete model valida-
tion.
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