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a b s t r a c t 

A new mathematical model is presented to describe both the active and passive mechanics of muscles. 

In order to account for the active response, a two–layer kinematics that introduces both the visible and 

rest lengths of the muscle is presented within a rational mechanics framework. The formulation is based 

on an extended version of the principle of virtual power and the dissipation principle. By using an ac- 

curate constitutive description of muscle mobility under activation, details of microscopic processes that 

lead to muscle contraction are glossed over while macroscopic effects of chemical/electrical stimuli on 

muscle mechanics are retained. The model predictions are tested with isometric and isotonic experimen- 

tal data collected from murine extensor digitorum muscle. It is shown that the proposed model captures 

experimental observations with only three scalar parameters. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Muscle is an active biological material that undergoes large

eformations and produces large forces in response to electri-

al/chemical stimulation. Because of the remarkable mechanical

roperties of this material, several attempts have been made over

he past century to model its active response, starting from Hill’s

ioneering work ( Hill, 1938 ). Typically, existing models combine

ifferent descriptions of the muscle electrophysiological activity

ccurring at the cellular level, with mechanical models that are for-

ulated within the context of rational continuum mechanics us-

ng either the active-passive additive decomposition of the stress

esponse or the active-passive multiplicative decomposition of the

eformation gradient ( Cherubini et al., 2008; Göktepe et al., 2014;

unter et al., 1998; Murtada and Holzapfel, 2014; Nardinocchi and

eresi, 2013; Sharifimajd and Stålhand, 2014; Stålhand et al., 2008;

011; 2016 ). In both cases, electro-mechano-transduction is mod-

led by introducing an electrophysiologically-based response func-

ion of either the active stress or the active strain of the muscle.

espite these attempts, the ability of muscles to change shape un-

er no force, driving a global shape change of the tissue, still poses

nique modeling challenges that are far from being resolved. 
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Within a purely mechanical model, the details of the muscle

lectrophysiology can be disregarded as long as the effects on the

echanical response are considered. Following this approach, a

odel for the active and passive mechanical behavior of biolog-

cal tissues has been proposed by some of the Authors ( Tan and

e Vita, 2015 ). Specifically, within the framework of Hill’s three-

lement model, an evolution law for the deformation of smooth

uscle cells and connected collagen fibers is formulated and a

ontraction force is introduced. This latter is assumed to be the

um of a motor force, describing the actin-myosin filament slid-

ng, and an elastic force that accounts for the cross-bridge defor-

ation. The motor force initiates the contraction of muscle cells,

nd is identified through a fitting procedure to uniaxial isomet-

ic length-tension experimental data ( Murtada et al., 2012 ) and

sotonic quick-release experimental data ( Dillon et al., 1981 ) on

ig carotid arteries and biaxial isometric inflation-extension exper-

mental data on pig coronary arteries ( Chen et al., 2013 ). 

A similar approach is adopted in this manuscript where a

odel for muscle mechanics is presented. The model has the fol-

owing main characteristics. It is set within a rational mechanical

ramework; it accounts for the effect of the electrophysiological in-

ut on the mechanical response; and it requires only three scalar

arameters (i.e., κ , m̄ , and ā , related to muscle stiffness, mobility,

nd activation) to capture the common mechanical response of the

uscle under both isometric and isotonic conditions. Ultimately,

his model can be used to investigate how biochemical inputs in-

uence mechanical outputs of the muscle. 

http://dx.doi.org/10.1016/j.jtbi.2017.05.007
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Fig. 1. Results of the isometric experiments for the EDL muscle, obtained with 

three different stimuli: single twitch; activation frequencies of 50 and 150 Hz as 

indicated in the plot legend. Top: Force versus time at fixed optimal length. Bot- 

tom: Zoomed in view of the top figure with time up to 0.6 s. 
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1 We use square parenthesis [ · ] to denote the physical dimensions of a quantity; 

L, F , and T are length, force, and time, respectively. 
The model is formulated within the rational mechanics frame-

work set forth by Rodriguez et al. (1994) and formalized by DiCarlo

and Quiligotti (2002) . Muscle contraction is viewed as a remodel-

ing of the muscle internal structure, i.e. a macroscopic evolution

of the rest state of the muscle due to microscopic processes. In

order to keep the model as simple as possible, we present a zero-

dimensional version, the muscle is viewed as an one-dimensional

homogeneous bar. We consider a two layer kinematics which dis-

tinguishes muscle shortening due to active contraction by intro-

ducing two length measures: the (visible, or experimentally mea-

surable) length and the rest length. This richer kinematics leads to

a balance of remodeling force that governs the evolution of the rest

length, independently of the balance of standard force. Just as the

standard force balance governs motion, the balance of remodeling

force governs muscle active contraction. Within this non-standard

balance of force, an Eshelby-like contribution appears that is inde-

pendent of any specific constitutive assumption on the muscle ma-

terial behavior. For simplicity, we select the Kirchhoff/Saint–Venant

constitutive function that depends only on the elastic stiffness κ . 

Muscle contraction can be initiated by chemical/electrical stim-

uli that cause a change in the intracellular calcium concentration.

The mechanical output of these stimuli is represented, within our

theory, by a muscle activation force a which is related to the ac-

tivation potential applied to the muscle during experiments and is

parametrized by its intensity ā . On the other hand, we control the

muscle electro-physiological characteristics through a function m

which accounts, at the macro-scale level, for the muscle mobility.

The general form of the mobility function is dictated by physiolog-

ical considerations and is parametrized via a scalar m̄ . 

The proposed model results in two coupled equations that de-

fine an initial value problem. This problem is solved by considering

data collected from murine extensor digitorum muscle (EDL), sub-

jected to isometric and isotonic tests. Ultimately, with only three

model parameters, κ , m̄ , and ā , both force over time at fixed

length and shortening over time at fixed force are captured. 

This paper is organized as follows. In Section 2 isometric and

isotonic experiments are described. We present the basic equa-

tions of the muscle model and comment on their key character-

istics in Section 3 ; a detailed derivation within the relevant the-

oretical framework is given in Section 3.4 . In Section 4 , isometric

and isotonic experiments are simulated using the model and the

results are compared to the experimental data by tuning the three

model parameters. Brief conclusions are presented in Section 5 . 

2. Isometric and isotonic data 

In vitro contractile data used to develop this model were ob-

tained from the Extensor Digitorum Longus (EDL) muscle of an

11 week old mdx (dystrophic) mouse. The EDL muscle (11.6 mm,

13.2 mg) was carefully excised from the mouse anesthetized with

a ketamine/xylazine cocktail. 4-O silk suture was tied to the prox-

imal and distal myotendinous junctions ( Wolff et al., 2006 ). The

muscle was fixed between the arm of a dual-mode servomotor sys-

tem (300B, Aurora Scientific) and a clamp positioned at the bot-

tom of the muscle bath filled with an oxygenated (95% O 2 , 5% CO 2 )

physiological salt solution prepared as described previously ( Wolff

et al., 2006 ), and maintained at 30 °C. The muscle was pre-loaded

to an initial resting force of 1.0 g, which was maintained by a step-

per motor; the force and position inputs of the servomotor arm

and the stepper motor were controlled by Dynamic Muscle Con-

trol software (DMC Version 4.1.6, Aurora Scientific). Muscle was

field stimulated in the bath via platinum electrodes that closely

flanked the muscle ( ±0 . 5 cm) with square pulses of 200 − μs dura-

tion at 40 volts delivered from a 701C Electrical Stimulator (Aurora

Scientific, Inc.). Simulation frequency and duration were controlled

by DMC. The electrodes did not touch the muscle, but were close
nough to provide field stimulation through the physiological salt

olution. 

The muscle was subjected to isometric contractions at the op-

imal length x o = 11 . 5 mm to generate force responses at various

ctivation frequencies: 1, 50, and 150 Hz (1 s duration; 1 min be-

ween each contraction) (see Fig. 1 ). In addition, after a 5 min

est period, the muscle was subjected to activation at 150 Hz to

enerate isotonic contractions using the tetanic afterload method.

riefly, the muscle was stimulated at 150 Hz at various percentage

oads set on the servo motor arm relative to the maximum tetanic

orce f max at 150 Hz. The loads included 5, 25, and 75% of max-

mum tetanic force, each separated by 1 min (see Fig. 2 ). Details

f these contractile property assays can be found in Quiat et al.

2011) ; Sperringer and Grange (2016) . Isometric and isotonic data

btained using the assays described above were used to test the

athematical model. 

. Modeling muscle contraction and relaxation 

We identify a prototype muscle with a one-dimensional and ho-

ogeneous bar, whose state is described by two variables: one is

he (visible) length x and the other one is the rest length x r ( [ x ] =
 x r ] = L ) 1 . The length x is the experimentally measurable length of

he muscle, and does not deserve any further comment. The rest
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Fig. 2. Results of the isotonic experiments for the EDL muscle. Top: Force versus 

time at 5, 25, and 75% of the maximum tetanic force f max . Bottom: Shortening ver- 

sus time. 
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Fig. 3. Length and stretch measures. Top: Stretch measures introduced in the 

model. Bottom: Typical values of x min 
r , x max 

r , and x o (optimal length) for EDL muscle. 

Note that x r spans the range (x min 
r , x max 

r ( Sperringer and Grange, 2016 ). 
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t  
ength x r is the length in the active or passive state when no ex-

ernal force is applied and cannot be experimentally measured. The

erm rest length can be used for the entire muscle, as in Fig. 3 , or

or its subunits; as example, the typical rest length for sarcomeres

anges between 2 μm to 3 μm ( Keurs et al., 1980 ). 

The elastic stretch λe of the muscle has to be measured with

espect to the rest length, and is defined by the following ratio

see Fig. 3 ) 

e = 

x 

x r 
. (1) 

t is important to note that the activation without the application

f a force shortens the muscle, and in this case x = x r ( λe = 1) ;

n the contrary, pulling the muscle without activation lengthens

t, causing the same increase in both x and x r . When a muscle is

oth activated and loaded, the two effects com pete with each other

nd the muscle is stretched, that is, x > x r ( λe > 1). In this case, a

uscle can: i) act as motor: it shortens, lifting a force (activation

revails); ii) act as a brake: it elongates, while sustaining a load

loading prevails) ( Dickinson et al., 20 0 0 ). 

We introduce a reference length x ref , and define two further

tretches: 

= 

x 

x ref 

, λr = 

x r 

x ref 

, ⇒ λe = 

x 

x r 
= 

λ

λr 
. (2)

oreover, we assume that x r ranges in (x min 
r , x max 

r ) and that

 

min 
r /x max 

r = 0 . 6 . The value of this ratio is typical for many differ-

nt muscles and is strictly linked to the ratio of the minimum and

he maximum sarcomere lengths. It is convenient to take the ref-

rence length as the maximum rest length, that is x ref = x max 
r . It
ollows that, while λ can, in principle, vary in (0, ∞ ), λr ranges in

0.6,1) (see Fig. 3 ). 

.1. The evolution equations 

The evolution of the state variables ( x, x r ) of the model is con-

rolled by two equations, representing the balance of forces and

he balance of remodeling forces, a non-standard equation in me-

hanics, supplemented by initial conditions on x and x r ( DiCarlo

nd Quiligotti, 2002 ): 

f = σ , 
˙ x r 

x r 
= m ( a − λr e ) , (3) 

x (0) = x init , x r (0) = x init 
r . 

he above equations describe the time evolution of the muscle’s

tate. We consider as inputs for the model the force f , represent-

ng the force pulling the muscle, and the activation a , represent-

ng the mechanical effects of the electro-physiological stimuli; we

ote that to obtain a shortening ( ̇ x r < 0 ), the activation a has to be

egative. The output of the model are the state variables x and x r .

lternatively, we consider as input, in addition to a , a kinematical

onstraint on x ; in this case the outputs are the force f and x r . In

q. (3) , σ represents the stress, e an Eshelby-like force and m > 0

he mobility function ( [ f ] = [ σ ] = [ a ] = [ e ] = F , [ m ] = F −1 T −1 ). 

The term a − λr e in Eq. (3) 2 represents the muscle driving force

efined by the competition between activation and force. Its value

etermines the shortening or lengthening of x r : 

a − λr e < 0 ⇒ 

˙ x r < 0 , muscle shortening (motor); 
a − λr e = 0 ⇒ 

˙ x r = 0 , 

a − λr e > 0 ⇒ 

˙ x r > 0 , muscle lengthening (brake). 

(4) 

The stress σ and the Eshelby-like force e are constitutively de-

ermined once an energy ψ r per unit rest length has been selected
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Fig. 4. (top) Dimensionless energy ψ r / κ , stress σ / κ , and Eshelby-like force e / κ ver- 

sus elastic strain λe . (bottom) Stress σ versus stretch λ for different stretches λr . 
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Fig. 5. Functions sh ( t ) and sp ( t ) as defined in (10) for f r = 10 / (t off − t on ) . 
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as a function of the elastic stretch λe : 

σ = ˆ σ (λe ) = ψ 

′ 
r (λe ) , e = 

ˆ e (λe ) = ψ r (λe ) − λe ψ 

′ 
r (λe ) , (5)

with ψ 

′ 
r the derivative of ψ r with respect to λe . Here, for simplic-

ity, we assume ψ r in the form of a Kirchhof–Saint Venant strain

energy 

ψ r (λe ) = 

1 

8 

κ(λ4 
e − 1) 2 + 

1 

8 

κ( log (λ4 
e )) 

2 , (6)

where κ ( [ κ] = F ) is the elastic stiffness. Fig. 4 (top) shows the di-

mensionless energy ψ r / κ , stress σ / κ , and Eshelby-like force e / κ ,

versus elastic stretch λe . We note that the Eshelby-like force is op-

posite in sign to the stress. It can be shown that, for λe = 1 + ε e ,
ˆ e (ε e ) = − ˆ σ (ε e ) + o(ε e ) ; it means that, in a linear theory, where

εe represents a infinitesimal deformation, the Eshelby-like force is

just the opposite of the stress in sign. Fig. 4 (bottom) shows the

stress-strain curves for different stretches λr that correspond to

different rest lengths x r ; given x ref , it can be observed that the elas-

tic response becomes stiffer as x r decreases, that is, as the muscle

contracts. The mobility function m and the activation function a on

the right-hand side of Eq. (3) 2 bring into the model the electro-

physiological characteristics of the muscle. The muscle mobility is

determined at the cellular level by the sliding-filament mechanism

and by the muscle state. In our model, the mobility function must:

i) define a threshold stress σ t below which x r does not change:

for σ < σ t , ˙ x r = 0 , and the response is purely elastic; 

ii) maintain the rest length x r within the physiological limits x min 
r 

and x max 
r ; 
ii) account for the sign of the muscle driving force (a − λr e ) . b  
To attain these goals, we assume the mobility m to be a func-

ion of x r , σ − σt , a − λr e : 

 = m (x r , σ − σt , a − λr e ) , 

nd we define it via the product of two (smoothed) switches as

ollows: 

 (x r , σ − σt , a − λr e ) = m̄ m σ (σ − σt ) m a (x r , a − λr e ) . 

he function m σ (σ − σt ) is introduced to describe item i ), while

he function m a (x r , a − λr e ) is introduced to capture items ii ) and

ii ). Both these functions range in (0, 1), and are defined in terms of

he complementary error function erfc (x ) = 2 / 
√ 

π
∫ ∞ 

x exp (−t 2 ) dt .

pecifically, they have the following form: 

 σ (σ − σt ) = 

1 

2 

erfc 

(
δσ − (σ − σt ) √ 

2 δσ

)
, (7)

nd 

m a ( x r , a − λr e ) 

= 

1 

2 

erfc 

(
x r − ( x max 

r − δx ) √ 

2 δx / 2 

)
1 

2 

erfc 

(
−( a − λr e ) √ 

2 δa 

)

+ 

1 

2 

erfc 

( 

−x r + 

(
x min 

r + δx 

)
√ 

2 δx / 2 

) 

1 

2 

erfc 

(
a − λr e √ 

2 δa 

)
. 

(8)

he parameters δσ = 10 −3 , δx = 2 · 10 −5 , and δa = 8 · 10 −3 in Eqs.

7) and (8) set the smoothness of the transition between 0 and 1;

nally, the constant m̄ defines the intensity of the mobility. 

The function a is related to the activation potential that is ap-

lied to the muscle during the experiments: single twitch, sum-

ation, and tetanus contractions can be produced based on the

requency of the stimuli. In this coarse description, we will use the

ollowing two representations: 

 (t) = ā sh (t ) or a (t ) = ā sp(t) , (9)

ith 

sh (t) = H(t − t on ) − H(t − t off ) , (10)

p(t) = sh (t) sin 

2 
[(t − t on ) π f r ] . 

ere, H ( ·) is the Heaviside function, ā the intensity of the acti-

ation, f r its frequency, and t on , t off the times at which the acti-

ation starts and stops, respectively ( [ t on ] = [ t off ] = T , [ f r ] = 1 /T ).

oth these functions are presented in Fig. 5 . 

As discussed in the next sections, we use sp ( t ) for modeling the

ow frequency response (twitch and stimulus at 50 Hz), and sh ( t )

or the high frequency response (stimulus at 150 Hz, for both iso-

etric and isotonic tests). 

.2. Isometric contractions 

An isometric contraction is one in which the muscle is stimu-

ated, producing a force, while its length is kept constant. When

he muscle fibers contract, a biophysical process is occurring at a

icroscopic level; in our model, this process is captured by the

hange in time of the rest length x r . The isometric contraction can

e described by solving Eqs. (3) under the kinematical constraint
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Fig. 6. Isometric contraction. The length x is kept constant. Upon activation at t on , 

the rest length x r decreases, and the force increases until it reaches a plateau value 

when a − λr e = 0 . At t off , the Eshelby-like term a − λr e > 0 , where a = 0 , restores 

the initial rest length while the force decreases to a pre-load value. The dark gray 

bar denotes the region where the activation is on. 
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Fig. 7. Isotonic contraction. The force history is controlled. Upon activation at t on , 

while the force increases until it reaches a plateau value, x r and x decrease (the 

muscle acts like a motor) and reach plateau values when a − λr e = 0 . At t off , the 

Eshelby-like term a − λr e > 0 , with a = 0 , causes an increase in x r and x (muscle 

acts like a brake) and restores the initial rest length. The dark gray bar denotes the 

region where the activation is on. 
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σ  
 = x̄ , where x̄ is the constant length at which the experiment is

erformed. In this case, λe = x̄ /x r , which means that the elastic

tretch only depends on the change in x r . Then, we have 

f = ˆ σ

(
x̄ 

x r 

)
, 

˙ x r 

x r 
= m 

(
a − x r 

x ref 

ˆ e 

(
x̄ 

x r 

))
, 

x (0) = x̄ , x r (0) = x̄ − ε , (11) 

here ε represents a small change in length due to a pre-stretch

pplied to the muscle prior to the isometric test. For this prob-

em, the couple ( ̄x , a ) is the input, while the couple ( x r , f ) is the

utput. Fig. 6 is a qualitative representation of the results of Eqns.

11) . Again, we note that x r is a quantity that cannot be measured

xperimentally. 

We can evaluate the tetanic force f max that correspond to dif-

erent constant lengths x̄ by solving Eqs. (11) with different inputs

( ̄x , a ) and using sh ( t ) for the activation function. For each value of

¯ , we compute f max at the plateau of the force versus time curve;

he values of f max and the corresponding x̄ /x ref = λ̄ can be used to

enerate the force-length relationship curve. 

.3. Isotonic contractions 

An isotonic muscle contraction is one in which the muscle is

timulated, producing a constant force, while changing its visible

ength. In our model, this process is described by changes in time

f both x and x r . The isotonic contraction can be described by the

olution of Eqs. (3) , assigning the couple ( f, a ) as input; in such

ase λe = x/x r , which means that the elastic stretch depends on

he two state variables. Then, we have 

f = ˆ σ
(

x 

x r 

)
, 

˙ x r 

x r 
= m 

(
a − x r 

x ref 

ˆ e 

(
x 

x r 

))
, 

x (0) = x̄ , x r (0) = x̄ − ε . (12) 

n this case, the couple ( x, x r ) is the output. The output provides

he visible muscle length x ( t ) under an assigned force history f ( t ).

ig. 7 is a qualitative representation of the results of Eqs. (12) ; note

hat, unlike isometric contractions, the force remains constant even

hen the activation is off. 

.4. Background: modeling framework 

Eqs. (3) are derived within a mechanical framework originally

roposed to describe volumetric growth ( Rodriguez et al., 1994 ),
hat is, changes in shape that do not vary the elastic energy stored

n a material ( DiCarlo and Quiligotti, 2002 ). The present model is

ased on the assumption that the muscles behave in a similar fash-

on: they change their rest length x r without varying their elastic

nergy ( Ambrosi et al., 2011; Nardinocchi and Teresi, 2007 ). 

Here we provide a brief, but comprehensive description of the

odel fundamentals, starting from the principle of power balance

 Germain, 1972 ). Given the pair of state variables ( x, x r ), we de-

ne the corresponding pair of velocity and remodeling velocity

( ̇ x , ˙ x r /x r ) ; the virtual velocities are then ( ̃  x , ̃  x r /x r ) . The principle

f power balance says that, for any virtual velocity ( ̃  x , ̃  x r /x r ) , the

nternal power generated by the stress σ on the virtual stretch
˜ = ˜ x /x ref and by the internal remodeling action a i on ˜ x r /x r must

e equal to the external power generated by the body force p on

˜  , by the body external remodeling action a on ˜ x r /x r , and by the

orce f at the boundary on ˜ x : 

 (
σ · ˜ λ + a i · ˜ x r 

x r 

)
dx 

 ︷︷ ︸ 
internal power 

= 

∫ (
p · ˜ x + a · ˜ x r 

x r 

)
dx + f · ˜ x ︸ ︷︷ ︸ 

external power 

. (13) 

he integrals in the above equation are computed with respect to

he reference length x ref . All the quantities involved are scalar but

e use the dot product symbol to emphasize the duality between

inematics and dynamics. 

It is worth noting that, since the internal power is expended by

he stress σ on the strain, we have a theory of grade one and we

onsider both body and boundary forces. On the contrary, for the

emodeling actions, we have a theory of grade zero, and boundary

emodeling actions cannot be accounted in the model ( DiCarlo and

uiligotti, 2002; Minozzi et al., 2015; Nardinocchi and Teresi, 2007;

ruesdell, 1965 ). The assumption of a homogeneous state yields

he trivial solution of the integral as: 
 

(σ · ˜ λ) dx = (σ · ˜ λ) x ref = σ · ˜ x . (14)

e assume that the body force is zero, that is p = 0 . The principle

f power balance then yields, for any ˜ x and ˜ x r /x r : 

(σ − f ) · ˜ x = 0 , (a i − a ) · ˜ x r 

x r 
= 0 , (15)

hat is, 

= f , a i = a . (16)
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Fig. 8. Isometric contraction at f r = 150 Hz. Experimental data (blue triangles) and 

model results (solid blue line) of force versus time. Model results of λ (light green 

line) and λr (dark green line) versus time. The shaded yellow region denotes the 

activation time interval. The two horizontal black thin lines represent the lower 

and upper bounds for λr which are related to the lower and upper bounds of x r as 

defined in Fig. 3 . Force is shown on left y-axis and λ and λr are on right y-axis. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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The external remodeling action a and the boundary force f must

be considered as input for the model, as they describe the activa-

tion and the force sustained by the muscle. We note that quantities

similar to a and a i have been introduced in growth and remodeling

theories with various names: configurational forces ( Gurtin, 2008 ),

remodeling couples ( DiCarlo and Quiligotti, 2002; Nardinocchi and

Teresi, 2006 ), material forces ( Maugin, 1993 ), and accretive forces

( Ambrosi and Guana, 2007 ). The internal remodeling action a i and

the stress σ must be defined by constitutive equations. 

The constitutive equations are derived from the dissipation prin-

ciple ( Coleman and Noll, 1963 ): given a free energy ψ per unit

of reference-length and denoted with σ d , a d the dissipative parts

of the stress and internal remodeling action, respectively, the fol-

lowing equality must be satisfied for any actual stretching velocity
˙ λ = ˙ x /x ref and remodeling velocity ˙ x r /x r : 

˙ ψ + σ d · ˙ λ + a d · ˙ x r 

x r ︸ ︷︷ ︸ 
dissipated power ≥ 0 

= σ · ˙ λ + a i · ˙ x r 

x r ︸ ︷︷ ︸ 
internal power 

, (17)

with the requirement that the dissipated power be always semi-

definite positive. It is worth noting that Eq. (17) involves actual

powers while Eq. (13) involves virtual powers. We assume that the

dissipation component of the stress is zero, that is σ d = 0 . We also

assume that there exists a purely elastic free energy ψ r per unit

rest length that depends on λe such that 

ψ(λr , λe ) = λr ψ r (λe ) . (18)

Here, λr represents the (1D) Jacobian of the map from x ref to x r 
accounting for the change of density. Note that ψ r (1) = 0 when

λe = 1 . 

To exploit the consequences of Eq. (17) , we must evaluate the

energy rate ˙ ψ . By using the formula 

˙ λe = 

˙ λ

λr 
− λe 

˙ λr 

λr 
, (19)

we have that the energy rate has the form: 

˙ ψ = ψ 

′ 
r 

˙ λ + λr (ψ r − λe ψ 

′ 
r ) 

˙ λr 

λr 
. (20)

The second term on the right-hand side involves the Eshelby-like

term e , introduced in Eq. (3) 2 : 

e = 

ˆ e (λe ) = ψ r (λe ) − λe ψ 

′ 
r (λe ) . (21)

Since ˙ λr /λr = ˙ x r /x r , replacing Eq. (20) in Eq. (17) yields for any ˙ λ
and ˙ x r /x r : 

(ψ 

′ 
r − σ ) · ˙ λ + (λr e + a d − a i ) · ˙ x r 

x r 
= 0 , ∀ 

˙ λ , 
˙ x r 

x r 
. (22)

The constitutive prescription for σ follows from the above equa-

tion and is already presented in Eq. (5) . Similarly, the constitutive

prescription for a i 

a i = λr e + a d . (23)

The constitutive equation for a d remains to be specified under

the requirement that the dissipated power be always semi-definite

positive for any ˙ x r /x r : 

a d · ˙ x r 

x r 
≥ 0 . (24)

The simplest assumption is the following: 

a d = 

1 

m 

˙ x r 

x r 
, (25)

where the mobility m > 0 has been presented and discussed in

Section 3.1 . By considering the above results, we can rewrite the

balance Eqs. (16) as follows 

σ = f , 
˙ x r 

x r 
= m (a − λr e ) . (26)
hese equations are equal to Eqs. (3) . 

. Results and discussion 

The modeling predictions have been compared to the experi-

ental data that were obtained by testing the EDL of a mouse in

sometric and isotonic contractions as described in Section 2 , by

uning the values of the parameters κ , m̄ , and ā . 

.1. Isometric contractions 

We evaluate the model by comparing the results of Eqns. (11) to

he isometric data shown in Fig. 1 . Toward this end, we consider a

uscle of fixed length x̄ = 0 . 9 x ref , with x ref = 12 . 8 mm, with t on =
 . 47 s, and t off = t on + 0 . 84 s. As in the experiments, in the model

e assume that the muscle is pre-loaded at 1 g by assigning the

re-stretch ε = 0 . 25 mm (see Eq. (11) 4 ). 

We solve Eqs. (11) for three different stimuli. For a frequency

f r = 150 Hz, we use a piecewise constant activation a (t) = ā sh (t) .

or f r = 50 Hz, that is when the frequency is low enough that the

uscle response exhibits periodic oscillations, we use the piece-

ise oscillatory activation a (t) = ā sp(t) . Finally, to simulate the

uscle response to a twitch, we use the piecewise oscillatory acti-

ation a (t) = ā sp(t) with just one pulse. 

The results of the isometric contractions are shown in Figs. 8–

0 , together with the data already shown in Fig. 1 . Figs. 8–10 show

he force, length (which is a horizontal line since the contraction

s isometric), and rest length versus time. The force measured from

he experiments is compared to the model results. 

It is important to note that we are using a coarse-grained model

f the muscle and many fine details such as the spreading of the

ctivation potential or the number of motor units which are re-

ruited upon activation are all subsumed in the three model pa-

ameters, namely κ , m̄ , and ā . We assumed that the value of κ ,

hich defines the elastic properties of the muscle, does not change

n different experiments such as the isometric and the isotonic

nes but we tuned the other two parameters to reproduce the ex-

erimental data. For the isometric data, we used the parameter

alues listed in Table 1 . 

We note that, for the isometric experiments, the mobility m̄ is

ow at f r = 150 Hz and then increases as the frequency decreases;

his reflects the fact that the muscle response becomes faster when

etanus is not developed and is the fastest when the stimulus is a
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Fig. 9. Isometric contraction at f r = 50 Hz. Top panel: Experimental data (red 

squares) and model results (solid red line) of force versus time. Model results of 

λ (dark green line) and λr (light green line) versus time. Bottom panel: Zoomed in 

view of the top panel up to 0.7 s. The shaded yellow region denotes the activation 

time interval. The two horizontal black thin lines represent the lower and upper 

bounds for λr which are related to the lower and upper bounds of x r as defined in 

Fig. 3 . Force is shown on left y-axis and λ and λr are on right y-axis. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 10. Isometric contraction at single twitch. Experimental data (black dots) and 

model results (solid black line) of force versus time. Model results of λ (dark green 

line) and λr (light green line) versus time. The shaded yellow region denotes the 

activation time interval. The two horizontal black thin lines represent the lower 

and upper bounds for λr which are related to the lower and upper bounds of x r as 

defined in Fig. 3 . Force is shown on left y-axis and λ and λr are on right y-axis. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 1 

Parameter values for isometric contractions. 

Field f r = 150 Hz f r = 50 Hz single twitch 

κ (g) 6 6 6 

m̄ (g −1 s −1 ) 0.33 0.95 1 

ā (g) −24 . 1 −19 −15 

Table 2 

Experimental times. 

Parameter f̄ = 1 . 58 g f̄ = 7 . 2 g f̄ = 21 . 2 g 

t on (s) 0.290 0.290 0.300 

t off (s) 0.800 0.800 0.810 

t̄ off (s) 0.885 0.898 0.863 
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witch. Conversely, the activation ā is high at f r = 150 Hz and then

ecreases as the frequency decreases; this is due to the fact that

t f r = 150 Hz we have the maximum force production, that is, the

aximum number of recruited motor-units, and hence a higher ac-

ivation. 

In order to keep the model as simple as possible, we assume

hat the value of the parameters do not change during each ex-

eriment. However, this assumption could be relaxed by choosing

arameters which are a function of time. Under this assumption,

ne can potentially better reproduce the experimental results. For

xample, in Fig. 9 (top), it can be observed that the experimen-

ally measured oscillating force drifts away towards large average

alues, a phenomenon better appreciated in Fig. 2 where only the

xperimental data are presented; this phenomenon can likely be

aptured by choosing m̄ and ā that vary with time. 

One relevant characteristic of the proposed model is that it pro-

ides the rest length x r as function of time. Although the experi-

ents do not provide data on how x r changes over time, the force

ersus time data offer some indirect measurements of the change

n x r since x r is related to force production by Eq. (11) 1 . As the fre-

uency decreases, the change in rest length (the contraction) and

he force decrease. 

.2. Isotonic contractions 

We compare the solutions of system (12) to the isotonic data

hown in Fig. 2 . Toward this end, we use the piecewise constant

ctivation a (t) = ā sh (t) with the activation times t on and t off re-

orted in Table 2 . Then we define a force history f ( t ), as controlled

n the experiments, by using the complementary error function

rfc as follows: 

f ( t ) = f o + 

(
f̄ − f o 

)
sf ( t ) , (27) 

f (t) = 

1 

2 

erfc 

(
−t + ( ̄t on + δt ) √ 

2 δ f 

)
(28) 

1 

2 

erfc 

(
−t + ( ̄t off − δt ) √ 

2 δ f 

)
, (29) 

here f o = 1 g represents a pre-load, and f̄ is the value of f ( t )

t the plateau. Moreover, δt = 0 . 02 and δ f = 0 . 08 are tuned to re-

roduce the experimental force history. We note that the times t̄ on 

nd t̄ off in sf ( t ) may be different to the ones appearing in sh ( t ). 

We solve Eqs. (12) for three isotonic contractions under the

orces f̄ = 1 . 58 g, f̄ = 7 . 2 g, and f̄ = 21 . 2 g and ε = 0 . For each

ontraction, the times t on , t off, and t̄ off are listed in Table 2 and

 ̄on = t on . The goal is to determine the couple ( x, x r ) from the

odel and compare the stretch λ over time with the correspond-

ng stretch x̄ /x + s (t) /x of the muscle that is computed from
ref ref 
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Fig. 11. Isotonic contraction at f̄ = 1 . 58 g. Experimental data (black dots) and 

model results (solid black line) of force (top) and stretch λ (bottom) versus time. 

Model results (green line) for λr (bottom). The mobility switch is shown too 

(dashed red line) (top). The shaded yellow region denotes the activation time inter- 

val. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 3 

Parameter values for isotonic contractions. 

Parameter f̄ = 1 . 58 g f̄ = 7 . 2 g f̄ = 21 . 2 g 

κ (g) 6 6 6 

m̄ (g −1 s −1 ) 4.5 0.9 0.6 

ā (g) −2 . 3 −8 . 15 −17 . 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Isotonic contraction at f̄ = 7 . 2 g. Experimental data (red squares) and 

model results (solid red line) of force (top) and stretch λ (bottom) versus time. 

Model results (green line) for λr (bottom). The mobility switch is shown too 

(dashed red line) (top). The shaded yellow region denotes the activation time inter- 

val. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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the shortening s ( t ) measured in the experiments (see Fig. 2 (bot-

tom)). 

The model results for the isotonic tests are shown in Figs. 11–

13 , together with the data already shown in Fig. 2 . Each fig-

ure presents two subfigures: the top one shows experimental and

model results for force over time and the mobility switch m σ (σ −
σt ) m a (x r , a − λr e ) / ̄m ; the bottom one shows experimental and

model results for λ and λr over time. For the isotonic experiments,

we used the values listed in Table 3 . Here, the same remarks done

for the isometric tests hold; we note that the higher is the force

production, the higher is the activation ā and the smaller is the

mobility m̄ . 

The first isotonic contraction is performed at f̄ = 1 . 58 g, a very

low force that corresponds to ∼ 5% of the maximum tetanic force

and is only 0.55 g higher than the pre-load σt = 1 g. Muscle short-

ening is the largest and the shortening rate is the highest among

the three isotonic experiments ( Fig. 2 ). We note that, in this exper-

iment, the force is maintained constant even after the initial length
as been recovered at t > 0.85 s. A post-load that is slightly higher

han the pre-load is seen also in the other experiments, but it is

ess noticeable as f̄ becomes larger than the post-load. A possible

ause could be the increased length of the muscle yielding a post-

oad higher that the pre-load. 

The agreement between the experiments and model is satis-

actory ( Fig. 11 ). For simplicity, we neglect the description of the

ost-load (after t � 0.85 s the measured force stays at its value of

 1.5 g, while the simulated force goes back to 1 g), and we sim-

late a force history that returns to the pre-load value after the

nitial λ is recovered. However, we could model the post-load be-

avior of the muscle, as done for the pre-load, by defining a mo-

ility function m that depends also on the post-load. The second

sotonic contraction is performed at f̄ = 7 . 2 g, which corresponds

o ∼ 25% of the maximum tetanic force. Both the muscle short-

ning and shortening rate are smaller than those recorded in the

revious isotonic experiment at f̄ = 1 . 58 g ( Fig. 2 ). The agreement

etween experiments and model is satisfactory ( Fig. 12 ), especially

uring the loading phase and the constant plateau; the post-load

hase is not reproduced with the same accuracy. We note that

orce decay and the stretch recovery are different between model

nd experiments due again to the presence of a ∼ 2 g post-load. 

The third and last isotonic contraction is performed at f̄ = 21 . 2

, a high force for the tested muscle, which corresponds to ∼ 75%

f the maximum tetanic force. Both muscle shortening and short-
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Fig. 13. Isotonic contraction at f̄ = 21 . 2 g. Experimental data (blue triangles) and 

model results (solid blue line) of force (top) and stretch λ (bottom) versus time. 

Model results (green line) for λr (bottom). The mobility switch is shown too 

(dashed red line) (top). The shaded yellow region denotes the activation time inter- 

val. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ning rate are very small ( Fig. 2 ). The agreement between experi-

ents and model is quite satisfactory for the force history, but not

s good for the stretch history ( Fig. 13 ). We note that the curve

escribing λ( t ) has two bumps at t on and t off. These are due to the

nherent numerical difficulties in integrating the system of equa-

ions that results in this case. Moreover, while the muscle short-

ning is slowly decreasing for almost the entire activation time,

he stretch predicted by the model reaches a plateau value much

aster. As mentioned earlier, the model could capture this behavior

y assuming a time varying m̄ for the mobility function. 

. Conclusions 

We present a mathematical model for muscle mechanics that

aptures experimental observations made during isometric and

sotonic tests. In the proposed model, although we gloss over the

etails of the microscopic processes that lead to muscle contrac-

ion, we account for the macroscopic mechanical effect of the

hemical/electrical input. The model is derived within the context

f a well-known rational mechanics framework that invokes the

rinciple of power balance and the dissipation principle . It is tested

nder both isometric and isotonic conditions by tuning the val-

es of three model parameters in order to match the experimental

ata. A key feature of the model is the prediction of the muscle

est length, a quantity that cannot be experimentally measured. 
Due to its simplicity, this one-dimensional model of mus-

le contraction can be easily embedded into a three-dimensional

odel of muscle tissues. This can be done by assuming that the

ctive mechanics of muscle fibers that mainly comprise the tis-

ue can be described by the proposed model. This extended three-

imensional model could then be implemented into finite element

odes for studying the role of passive and active muscle mechan-

cs in many natural phenomena (e.g., fish swimming ( Curatolo and

eresi, 2016; Lucantonio et al., 2014; Nawroth et al., 2012 )) and

any muscular diseases (e.g., muscular dystrophy ( Virgilio et al.,

015 )). 
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